
A Genetic Algorithm for the Generation of Jazz Melodies

George Papadopoulos and Geraint Wiggins
Department of Artificial Intelligence

University of Edinburgh
80 South Bridge, Edinburgh EH1 1HN, Scotland

Email: georgep,geraint @dai.ed.ac.uk

Abstract

This paper describes a system for the generation of jazz melodies over an input chord progression. A
genetic algorithm was used to search through the space of possible solutions. A symbolic, as opposed to
binary, approach with domain-specific reproduction operators was chosen because it allowed knowledge
based constraints to be imposed on the search space. The objective, algorithmic fitness function as well
as the domain-specific genetic operators orientate the search to promising musical paths.

1 Introduction

Genetic algorithms (GAs) (Holland, 1975; Goldberg, 1989) have proven to be very efficient search methods,
especially when dealing with problems with very large search spaces. This, coupled with their ability to
provide multiple solutions, which is often what is needed in creative domains, makes them a good choice
for a search engine in a musical application.

In this paper, we describe a series of experiments using a GA to generate melodies in a jazz style, given
an underlying harmonic progression. Our GA exhibits three significant characteristics which are uncommon
in GA applications to music:

An algorithmic fitness function for objective evaluation of the GA results. In this work, we focus on
the searching behaviour of our algorithm, and so we need to know exactly what criteria we are using
to evaluate the melodies. By the word ‘objective’ we do not mean ‘correct’ or ‘universal’, since the
evaluation of any artistic endeavour is subject to many parameters, not least personal preference. The
point is that we need a consistent way to evaluate our results since this will give us the necessary
feedback about any shortcomings of our work. We are interested in understanding the search and
how it might simulate human behaviour and not just in achieving a musical result.

Problem-dependent genetic operators. In traditional GA implementations, the genetic operators do
not have knowledge of the domain. They often operate at bit level and therefore they are suitable
for any problem encoding (i.e., they are a “weak” search method). In contrast, problem-dependent
operators are designed for a specific problem. For this reason, they can deal more effectively with it.

Symbolic representation of the structures and the data. Many GA problem encodings are binary. A
symbolic representation is easier to interpret by the user and can restrict the use of genetic operators
to actions which are meaningful in the context of the domain knowledge.

The structure of this paper is as follows: first we present a review of existing GA applications in music.
We then proceed with the implementation and evaluation of our system presenting also some results. We
discuss a few possible extensions to our work and finish with our conclusion.

2 Related Work

GAs’ popularity in the AI community has increased rapidly over the last decade. There are several systems
using this technique to generate music algorithmically. We can divide these attempts into three different
categories.

Use of a prescribed, knowledge-based fitness function: There are not many attempts in this category be-
cause it is difficult to find objective rules for the evaluation of music. Horner and Goldberg (1991)
used GAs for thematic bridging between very simple melodies; McIntyre (1994) generated a four
part Baroque harmonisation of an input melody. McIntyre used only the C major scale in order to
reduce the search space.

Use of a human user as a fitness function: In this case a use replaces the fitness function in order to eval-
uate the chromosomes. Jacob (1995) devised a composing system; Horowitz (1994) generated “taste-
ful” rhythmic patterns; Ralley (1995) developed melodies; and Biles (1994), whose work is most
closely related to ours, evolved a “novice jazz musician learning to improvise”. All these attempts
exhibit two main drawbacks associated with all IGAs: subjectivity (Ralley 1995) – it is very likely
that the user will be biased from previous listenings, or even change her mind over time because of a
change in her mood or of boredom – and efficiency, the “fitness bottleneck” (Biles 1994) – the user
must hear all the potential solutions in order to evaluate a population. Moreover, this approach tells
us little about the mental processes involved in music composition since all the reasoning is encoded
inaccessibly in the user’s mind.

Use of a neural network as a fitness function: Gibson and Byrne (1991) created simple harmonizations,
using only the tonic subdominant and dominant chords, of short melodies using cooperating neural
networks. Spector and Alpern (1995) used genetic programming (Koza, 1992) to create a one meas-
ure response to a one measure ‘call’, with a neural network as a fitness evaluator of the response.
Biles et al. (1996), in an attempt to increase the efficiency of Biles’ (1994) system, used also a neural
network, without successful results.

Most of the approaches above exhibit very simple representations in an attempt to decrease the search
space, which in some cases compromises their output quality. Musical questions are sometimes left un-
answered, too. For example, in Spector and Alpern’s (1995) and Ralley’s (1995) case, how can we expect
to evaluate the system’s response if we do not have a harmonic context for it? We discuss these and other
related issues in section 3.1 below. For a more complete summary of GA work in music see Burton and
Vladimirova (1997).

In the current state of the art, it is not known how to implement a fitness function which will rate the
quality of music, even in a very restricted domain. However, it is possible to provide the user with a
number of choices, then implementing a fitness function which rates how well the musical output fits the
user’s preferences.

The GA described below uses an objective and consistent fitness function which encodes knowledge
borrowed from research in cognitive psychology and statistical analysis of pieces. It is more efficient than
an IGA – it takes less than a minute to produce a 12-bar melody on a single-user Sun Ultra 1 – and it
exhibits generality in the representation of knowledge, allowing variable chromosome lengths, any number
of chords in any position in the piece – not just in the downbeats – and mixed note durations.

3 Implementation

3.1 Design Motivation

In section 1, we introduced the idea of using an objective fitness function, as opposed to the interactive ap-
proaches often used elsewhere in the GA music field. The reason for this is that we have a particular interest
in understanding the searching behaviour of our GA: we are interested in simulating human behaviour and
not just in the quality of our results. In order to understand the search patterns produced by our system,
it is important to have a fitness function which is consistent, and whose criteria we fully understand. This
could not be the case with an interactive GA, because of the subjectivity of the human listener – it would
be impossible to determine which choices were made because of emergent behaviour of the system and
which were made because of the inconsistencies of the human judge. Equally, the intermediate position of
training a neural network according to a human listener’s expressed preferences is unsuitable for our activ-
ities: while the network could be relied upon to reflect the listener’s choices consistently, generalisations
made might be musically groundless; and we would still be in the position of not being able to analyse
the behaviour of the system in terms of the knowledge encoded in the fitness function. However, let us
emphasise that we are not suggesting that the interactive or network-aided approaches are inappropriate in
all cases – they are simply inappropriate to our purposes here.

This said, it would be a challenge indeed to build the perfect algorithmic fitness function which would
direct the search towards maximally desirable melodies. So instead of trying to approach this intractable
problem, we have built domain-orientated operators and a fitness function which imitate the basic impro-
viser’s “work tools” and mental processes, drawing on the literature on jazz improvisation (Coker, 1964;
Fakanas, 1990; Sabatella, 1996, for example) for inspiration. We expect, therefore, that although the final
output may not be as impressive as some of the existing jazz improvisation GAs (see section 2), it will
nonetheless help us understand what is missing from this and other systems more clearly.

3.2 The Genetic Algorithm

The implementation of the Genetic Algorithm is in the style of Davis (1987). The selection method used was
tournament selection. The merge operator simply copies the intermediate population to the new population.
Figure 1 shows the different steps of the algorithm for each generation.

PARENT

POPULATION

BREEDING

POPULATION POPULATION POPULATION

INTERMEDIATE NEWSELECT() OPERATE() MERGE()

N+1 Generation Generation N
Figure 1: The steps of the Genetic Algorithm

3.3 Knowledge Representation

Our motivation was to find a flexible and efficient representation for the chromosome. We decided that the
chromosome would represent the degrees of the scale, relative to the current chord, rather than the absolute
pitches – a degree-based representation. The advantage of this approach is that it uses the combination of
the degree and its corresponding chord to specify the actual pitch of the melody. This means that we cannot
generate non-scale notes, except in the potentially musically desirable case where a melody note spans two
different chords, which, in jazz terminology, means it spans two different scales. Because the interpretation
of the note is based on the first chord, there is a possibility of a dissonant suspension over the chord change,
which is then dealt with by the fitness function. Instead of simply having degrees from 1 to 8 (where 8 is
used for 8-degree jazz scales) we used an extended-degree representation, giving 21 different values which
correspond to 3 octaves for a 7-note scale, and about 2.5 octaves for an 8-note scale.

The chromosome is then a sequence of extended-degree,duration pairs, rests being distinguished by
the constant rest in place of the extended-degree.

The chord progression, input by the user, on which the melody is to be based, is a sequence of root,chord-
type,duration triples, using standard musical nomenclature, e.g., B ,maj7,minim .

3.4 Initialisation

In our implementation, the input chord progression determines the duration d of the song. A population of
size n is a set of n chromosomes represented as Fitness,Genotype pairs. The preparation of the population
consists of two steps: initialisation; and then initial evaluation. For each chromosome in the population, a
sequence (genotype) of extended-degree ,duration pairs is generated, where duration =d. The
pitches are chosen randomly with uniform probability. The probability of generating a rest was set to 12.5%.
The user can specify the possible note durations and their respective probabilities. The fitness function is
then used to evaluate each randomly generated genotype.

3.5 Genetic Operators

The speed of convergence to high fitness of this system, and the quality of its results are based largely on
the genetic operators. Three classes of musically meaningful (Biles, 1994) mutations were implemented,
the partition being based on the way the mutations operate on the chromosome. The classes are:

Local mutations These mutations operate on a random chromosome fragment of random length. For
example, such mutations transpose by a random number of degrees; permute in time; sort into ascending
or descending pitch; reverse in time; change a few pitches while maintaining the same rhythm; shuffle the
note durations while maintaining the order of the pitches; and concatenate contiguous rests and identical
pitches. There is also a simple one-note mutation which just changes the pitch of one note up or down,
which can be helpful when the melody needs only small changes for large increases in fitness.

Copy & operate mutations These mutations copy a randomly chosen fragment to a different position
while possibly operating on it as per a local mutation. Included in this class is also a swap mutation, which
swaps two segments, rather than overwriting one. The original material at the target position is overwritten,
which can necessitate splitting one or two notes’ durations into two, in order to preserve the total duration
of the melody.

Restricted copy & operate mutations The last class of mutation also chooses fragments randomly, but
this time from a set of given starting positions and with constant size. The starting position can be the first
or third beat of any bar, and the size is half a 4

4 bar (i.e., a minim), so if we have a melody of 4
4 measures

then there are fragments to choose from. This restriction seems to be useful because the ear recognises
familiar motifs more easily when they start at consistent metric points within a piece. Note, though, that
the less regular patters given by the unrestricted mutations above may be musically interesting – this is why
both the types of copy & operate mutations were implemented. The user can then choose which she prefers
to experiment with.

One-point and two-point crossover were also implemented. As above, these operations can sometimes
necessitate splitting the durations of notes into two.

The operators were selected with probabilities ranging from 10% to 20%.

3.6 Fitness Function

The fitness function evaluates eight distinct characteristics of a chromosome, from which its calculates, via
a weighted sum, the corresponding overall fitness. This section describes these characteristics and explains
the reasons why they were chosen. Corresponding weights are given in round brackets.

Large intervals Because of the random initialisation of the chromosomes, it is possible that there will
be very large intervals between consecutive notes, which can be aesthetically irritating for the listener, as it
contradicts Gestalt law of proximity (Leman, 1997). This part of the fitness function reduces this problem.
The user can specify the largest permissible interval between consecutive notes. The fitness penalty is the
sum of the sizes of the intervals which are larger than permissible, multiplied by a constant weight ().

Pattern matching In this implementation, pattern matching occurs only between pitch fragments, and
not rhythmic ones. The addition of pattern matching to the fitness function is psychologically motivated,
from the Gestalt law of similarity (Leman, 1997), and can be statistically supported, by analysing human-
generated melodies. Listeners not only recognise but expect similar patterns in music – it is by means of a
partly repetitive structure that the development of the music is communicated. In accordance with this, mu-
sicians have the tendency, when they improvise using patterns, to vary them, for example by transposition
or change of rhythm.

Even though our genetic operators were designed specifically to create the feeling of thematic develop-
ment in the melody by generating variations of motifs, we decided that it was useful to add this feature to
the fitness function, partly in order to see if the operators work as expected, but also to allow for the case
where motivic development occurred by chance.

In our system, the user can specify whether she prefers that the algorithm will try to find exactly match-
ing interval patterns or she prefers a looser form of matching.

The output of the pattern matching algorithm is a list of numbers, where each number denotes that
there exist two similar patterns of length in the melody. The system does not attempt to find overlapped
similar patterns. By default, the patterns must be of five or more notes in length. The allocation of weighting
to this part of the fitness function is discussed in section 4.

Suspensions As explained in section 3.3, it is possible to generate suspensions – notes which lie across
two consecutive chords. If the chord sequence is of length then the melody may have up to
suspensions. This part of the fitness function checks what happens to those chord changes. We
considered four cases, with distinct weights: there is a consonant suspension, meaning that the note is a

member of both scales determined by the two consecutive chords (); there is a dissonant suspension,
which means that the note is a member of the first scale but not of the second (); there is no suspension
(); or there is a rest ().

Note at downbeat The first beat in a bar is usually the most musically significant beat in that bar. The
downbeat can be: a chord note (+10); a rest (+10); a non-chord but still a scale note (-10); or a non-scale
note (-20).

Note at half-bar The same as the downbeat function, but for the third beat of each bar. Since the third
beat is weaker than the first beat of a 4

4 bar, it is less restricted. Therefore the respective, weights, except
for the non-scale note case, are smaller: (), (), (), ().

Long notes The user can specify what she considers to be long notes. Long notes are mostly used in
music as points of stasis. Therefore, it is preferable to have harmonically stable long notes. A long note can
be: a chord note (); a non-chord scale note (); a rest (); a consonant suspended note (); or
a dissonant suspended note (). Long rests are penalised because they damage the continuity of the solo.

Contour This is a comparison between the contour of the chromosome and the contour specified by the
user. The user specifies whether the average pitch of each bar is lower than, the same as or higher than the
last. Thanks to Prolog’s unification mechanism, it is also possible to specify that the contour in one place
is the same as in another, but without saying exactly what it is. If and denote the direction of change
in the ith bar of the user-specified and chromosome contour respectively (ranging over in the
obvious way), then if the fitness bonus is points; otherwise, the penalty is .

Speed Similar to Contour, except that the algorithm is making an estimate of the speed of the piece
simply by adding the number of notes and rests in each pair of consecutive bars, and matching them to
‘slow’, ‘medium’, or ‘fast’ as appropriate.

3.7 Input, Parameters and Preferences

The user input, parameters and preferences for our experiments are summarised in table 1.

Selection method Tournament selection, pick from .
Merging method Simple copy.
Population size chromosomes.
Maximum generation The maximum number of generations, which was also the termination con-

dition was . In many cases the GA converged to the highest fitness
much earlier.

Melody duration The duration of the solo was chosen to be 192. This corresponds to 4
4

bars, as we use for a semi-quaver duration.
Chord progression 4

4 bar blues chord progressions where taken from (Coker, 1964).
Large interval Greater than semitones (major sixth).
Pattern matching Pattern matching, when used, was set to match absolute pitch intervals,

with no fuzzy matching. In other words, this means that the pattern match-
ing algorithm was trying to find identical or transposed patterns only.

Weights All the weights, except the pattern matching weignt, were constant for all
the experiments.

Long notes If the duration of a note or a rest is a larger than or equal to a crotchet.
Duration probabilities We experimented with different duration probabilities. In many of the ex-

periments the note probabilities were: for a semi-quaver, for a
quaver and for a crotchet.

Hill-climbing In many of the experiments we did not allow the child to replace its parent
if it was not at least as fit.

Table 1: Preferences for the melody generation experiments

4 Summary of Results and Evaluation

The GA converged very quickly to high fitness because of the domain specific genetic operators and the
restricted representation. Conversely, the generated melody line did not reach a musically acceptable stand-
ard until the restricted version of the last type of operators (above) were implemented and used. Pattern
matching in the fitness function, once it was correctly weighted (see below) gave a feeling of development
in the melody, as did the domain specific genetic operators. We performed three sets of experiments, as
follows.

Using local mutations The GA performed very well, within the constraints of its encoded knowledge.
The resulting melodies followed the required contour, with a minimal number of over-large intervals, illegal
suspensions, long rests, and a maximal number of valid downbeat notes and valid long notes. The only ex-
ception to this is that the initial note-duration probabilities sometimes prevented the search from converging
to the required speed profile. This was a shortcoming of the operators used: there was no operator which
would break long notes into sort ones, and so it was impossible to reach the optimal part of the search space.
In spite of this success, the melodies mostly sounded like a collection of random notes (compressed in pitch
spread, as the algorithm reduced large intervals). There was no feeling of theme development, as expected,
because the mutations used were local.

Using copy & operate mutations The uninspiring musical results arising from the use of local mutations
led us to implement the copy & operate mutations. The output, in most cases, is still of little musical
interest, because, even if we copy similar fragments of the melody to different positions, creating a feeling
of development, later mutations can destroy them. So the randomness of the GAs choices is a problem
here. This was the motivation for the implementation of the restricted operators, which partly alleviate the
problem. The output of the GA using these mutations sounds much better and in some cases it is impressive
(see figure 2). This was the first time that there was any feeling of development (successful or otherwise)
in the results.

Figure 2: A melody generated using the restricted mutations

Activating pattern matching The problem with the GA in the two experiments above is its incapacity
to create the feeling that there is any development of musical ideas in the output. The GA can generate
interesting rhythmic patterns – it is not biased like humans to a few rhythmic motives when improvising –
but it does not develop them, especially when using the local mutations. This was the motivation for the
implementation of pattern matching in the fitness function, giving the system the explicit idea that it is good
to reuse its motifs.

Initially, we tested a combination of both versions of the copy and operate mutations with pattern match-
ing. The pattern match score was a constant multiplied by the number of similar patterns, more than four
notes long, found in the melody. The initial multiplier was the same as that of other parts of the fitness
function. The result which we had was quite enlightening, though not at all musical: the GA generated
the most extreme case of similar patterns: repeated identical notes. The problem was that pattern matching
outweighed all the other parts of the fitness function.

We found that using only the restricted copy & operate mutations gave a more musical feeling, because
these mutations put the copied motives in sensible metric positions, which makes it easier to perceive the
relation between related motives.

On adding our pattern matching algorithm into the GA’s fitness function, we found that the search
behaviour seemed to fit into 3 phases:

Initial Phase: In the early generations, the genetic operators mostly smooth out the pitches in the melody,
enforcing the local characteristics of the melody required by the fitness function. Big changes
between generations are unlikely, because our restricted mutations operate on a fixed length and a
relatively small fragment of the melody. At this stage, it is also statistically unlikely that melod-
ies featuring desirable repeated patterns will survive selection, because – even if a genetic operator
creates similar patterns in some of the population – the resulting increase in their fitness will be smal-
ler than that of other melodies, in which mutations have improved several characteristics at once,
resulting in a large combined fitness increase.

Transition Phase: The initial state continues until the fitness of some chromosome(s) (or perhaps the
average fitness of the population) is high enough with respect to the local fitness constraints that
a mutation which introduces similar patterns is preferred over a mutation which will correct local
faults. Therefore chromosomes appear which exhibit a few similar patterns.

Final Phase: Now the algorithm reaches its critical point. Either there will be a balance between the two
kinds of fitness constraint, and hence stasis, or some members of the population will be such that by
unboundedly generating similar patterns it will converge to a higher fitness, because pattern matching
outweighs the other parts of the fitness function. If this happens, it is possible that the work of the
mutations in correcting locally unfit melodies will be undone as a side effect of generating more
similar patterns, because the overall fitness would nonetheless be increased.

To clarify this last explanation: suppose that a mutation will generate 5 similar patterns, with a fitness
bonus of 20 each, but in doing so will create three undesirably large intervals, with a fitness penalty of -20,
and one non-chord downbeat, also penalised at -20. The resulting fitness is ,
which is an overall increase in fitness. The problem is exacerbated because there is no upper bound on
the size of copied segments, so even one mutation can generate numerous similar patterns by copying an
existing repeating sequence. One way to solve this problem would be to use a logarithmic function for the
calculation of the pattern matching value instead of a linear sum.

The difficulty is to maintain balance between the creation of an adequate but not excessive number of
similar patterns, and all the other characteristics of the melody. This is difficult because it depends on many
parameters (duration probabilities, weights, generation number, etc.).

Setting an upper bound of 50 similar patterns and using a smaller weight for each pattern the results
were much more encouraging (see figure 3), so we conclude that the pattern matching weight should not
be high with respect to the other fitness weights. Then, the part of the fitness function which finds similar
patterns will operate more as an indication that mutations are working well, rather than as an attractor to
musical output consisting of numerous repetitive patterns.

Another approach, which we have not explored, would to use an even smaller weight, but with fuzzy
(i.e., looser) matching, which is, of course, musically plausible. However, if the weight is too small, the
GA may never reach the transition stage mentioned above.

A few more experiments Another interesting issue is how the system sometimes achieved a constant
required contour. Figure 3 shows a melody which is made up of descending followed by ascending patterns
(or the opposite). The weight of the pattern matching was very small and the note probabilities were 90%
semi-quaver and 10% quaver. Because of the small note duration, there were no suspensions and the the GA
could do nothing to match the slow part of the required speed profile. We also see here another advantage of
the restricted mutations, in connection with the use of rests and their respective musical connotations. The
rests, most probably, will exist in the same metric (rhythmic) positions. In figure 3’s melody, for example,
there are 8 and 7 out of 12 (12 bars) rests in the downbeat and third beat respectively. Many rests on the
downbeat give a funky feeling to the piece.

In one experiment, we initialised the population with quavers only, and switched off crossover operators
and the concatenate mutation, which can both change the duration of notes. We were surprised to find that
the GA had managed to create crotchets in order to match required speed profile. This was because the
algorithm was merging contiguous rests before evaluating the chromosome – necessary because long rests

Figure 3: A melody using pattern matching

in a melody, as mentioned above, are penalised by the fitness function. Then, since the resulting long rests
were penalised, a mutation redistributed the durations in fragments including the longer rests, resulting in
longer notes.

We reran the GA with the same random seed but with some small adjustments in the mutation prob-
abilities. The two resulting melodies were very similar. Listening to them suggested that a significant
improvement would be obtained by taking the first half of the first example and the second half of the
second – under human control. We also replaced the last bar with a tonic minim in order to give a feeling
of an ending. The result of this intervention is shown in 4), which we believe is a credible melody. In one

Figure 4: A human’s cut & paste from two GA melodies

sense, this an interactive GA, but it cuts out the fitness bottlneck, as we do not have to listen the outputs of
every generation in order to help the GA create something good.

A few of our final experiments used no selection at all. We slightly increased the one and two point
crossover probabilities in order to allow more interaction between the chromosomes. From the algorithmic
point of view, the results were as good, which suggests that the mutations alone encode enough knowledge
to direct the search usefully.

In conclusion, perhaps the best description of the function of our system is that it reduces the search
space by ruling out solutions which are most probably musically unacceptable. It therefore increases the
probability of a listenable output.

5 Extensions

Many different ideas for extensions have arisen during and since the implementation of this system. A short
discussion of a few of them follows.

GA Parameters The weights for our operator selection and fitness function were chosen and adjusted
intuitively. So, with different parameters we might get better results. One way to optimise the parameters
would be to use regression analysis, training the fitness function with existing acceptable melodies and
demanding that they should have high fitnesses.

Statistical Analysis More statistical musical analysis could be added into the fitness function. For ex-
ample, the difference between intervallic and linear melodies is that the average interval is larger in the
former than in the latter; the average deviation from this average interval should also be small in order to
preserve consistency. Data is available from statistical analyses, for example, in Järvinen (1997).

Musical structure We have paid no special attention to the beginning and ending of our melodies. The
fitness function should test if the chromosome has valid cadences. A simple implementation might ask the
user to specify where in the melody cadences are required. A valid cadence might be at a long note or a
note which is followed by a long rest, probably preceded by shorter duration notes.

Another softer constraint might evaluate the individual characteristics of some scales, and promote or
penalise on this basis. For example the 4th degree of the ionian and mixolydian modes are considered
undesirably dissonant (Fakanas, 1990; Sabatella, 1996).

Motif-based representation Motives might be used instead of simple notes as the basic units of the
melody. This would admit encoding of more complex rhythmic patterns such as triplets or swing. A motif
might still represent one note of any valid duration, or it might represent a set of notes with a special
connection. This leads naturally to using existing motifs from a real-world database drawn from the jazz
theory literature (Coker et al., 1970; Steinel, 1995; Pass and Hibler, 1994), which, we suggest, would
simulate human improvisation closely.

Structured GAs A hierarchical combination of GAs might also be useful, each GA engine operating on
specific parts of the chromosome, communicating as they did so. One possible architecture might be to use
different GAs which will find fit rhythms and melodies and a higher level GA will find fit combinations.

Musical Tension A much more ambitious extension would be to calculate the tension curve of the
melody, and match it against user-specified requirements. This would be a big step forward in overcoming
the lack of reasoning which the system exhibits, since the manipulation of tension by composers is cited as
the main reason of meaning in music (Meyer, 1956, 1973; Narmour, 1990, 1992) . Our further work will
be directed to this end.

In summary, we emphasise that, the more musical knowledge we encode in the system, the better are
the results.

6 Conclusion

Subjectively, our system often generates interesting music patterns. The results were particularly encour-
aging if we bear in mind the small amount of knowledge encoded in the system.

More importantly, even in this prototypical form, the system is certainly more useful to us as a research
tool than an interactive GA; we have suggested also that it is a more practical musical tool.

We expect that the extensions mentioned in this paper, some of which we will follow up in future, will
guide the search to more consistent and human-like musical paths.

Acknowledgements

We gratefully acknowledge the help and advice of Andrew Tuson, Department of AI, University of Edin-
burgh, who helped to supervise the early stages of this project.

References

Biles, J. (1994). Genjam: A genetic algorithm for generating jazz solos. In Proceedings of the International
Computer Music Conference.

Biles, J., Anderson, P., and Loggi, L. (1996). Neural network fitness functions for a musical IGA. Technical
report, Rochester Institute of Technology.

Burton, A. and Vladimirova, T. (1997). Applications of Genetic Techniques to Musical Composition. Avail-
able by WWW at http://www.ee.surrey.ac.uk/Personal/A.Burton/work.html.

Coker, J. (1964). Improvising Jazz. Prentice-Hall.

Coker, J., Casale, J., Cambell, G., and Greene, J. (1970). Patterns for Jazz. Warner Bros. Publications, 3rd
edition.

Davis, L. (1987). Genetic Algorithms and Simulated Annealing. Morgan Kaufmann.

Fakanas, G. (1990). Scales in Contemporary Music. Contemporary Music Publishing (Greek).

Gibson, P. and Byrne, J. (1991). Neurogen, musical composition using genetic algorithms and cooperating
neural networks. In Proceedings of the 2nd International Conference in Artificial Neural Networks.

Goldberg, D. (1989). Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley.

Holland, J. (1975). Adaptation in Natural and Artificial Systems. University of Mitchigan Press.

Horner, A. and Goldberg, D. (1991). Genetic algorithms and computer-assisted composition. In Proceed-
ings of the Fourth International Conference on Genetic Algorithms.

Horowitz, D. (1994). Generating rhythms with genetic algorithms. In Proceedings of the International
Computer Music Conference.

Jacob, B. (1995). Composing with genetic algorithms. In Proceedings of the International Computer Music
Conference.

Järvinen, T. (1997). Tonal Dynamics and Metrical Structures in Jazz Improvisation. University of
Jyväskylä, Finland.

Koza, J. (1992). Genetic Programming. MIT Press.

Leman, M., editor (1997). Music, Gestalt and Computing: studies in cognitive and systematic musicology.
Number 1317 in Lecture notes in artificial intelligence. Springer, Berlin.

McIntyre, R. (1994). Bach in a box: The evolution of four-part baroque harmony using the genetic al-
gorithm. In Proceedings of the IEEE Conference on Evolutionary Computation.

Meyer, L. (1956). Emotion and Meaning in Music. University of Chicago Press.

Meyer, L. (1973). Explaining Music. University of California Press.

Narmour, E. (1990). The Analysis and Cognition of Basic Melodic Structures. The Implication-Realization
Model. University of Chicago Press.

Narmour, E. (1992). The Analysis and Cognition of Melodic Complexity. The Implication-Realization
Model. University of Chicago Press.

Pass, J. and Hibler, J. (1994). Improvising Ideas. Mel Bay Publications.

Ralley, D. (1995). Genetic algorithms as a tool for melodic development. In Proceedings of the 1995
International Computer Music Conference.

Sabatella, M. (1996). A Whole Approach to Jazz Improvisation. ADG Productions. Also available from
http://www.outsideshore.com/primer/primer/.

Spector, L. and Alpern, A. (1995). Induction and recapitulation of deep musical structure. In Proceedings
of the IJCAI-95 Workshop on Artificial Intelligence and Music.

Steinel, M. (1995). Building a Jazz Vocabulary. Hal Leonard Corporation.

